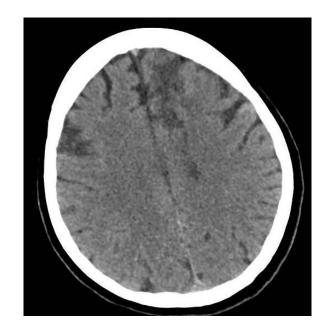
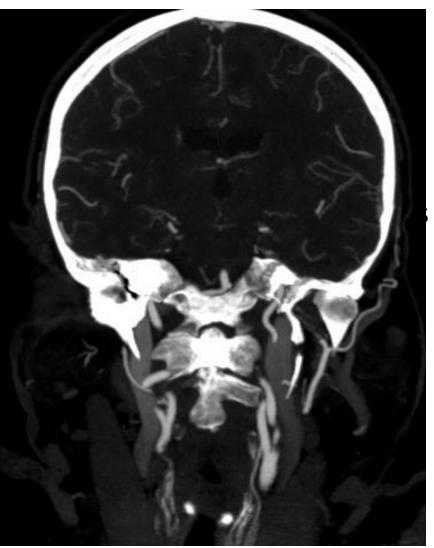
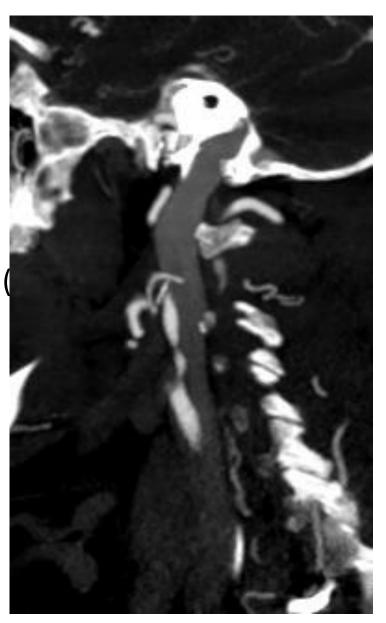


Guy Raphaeli, M.D.

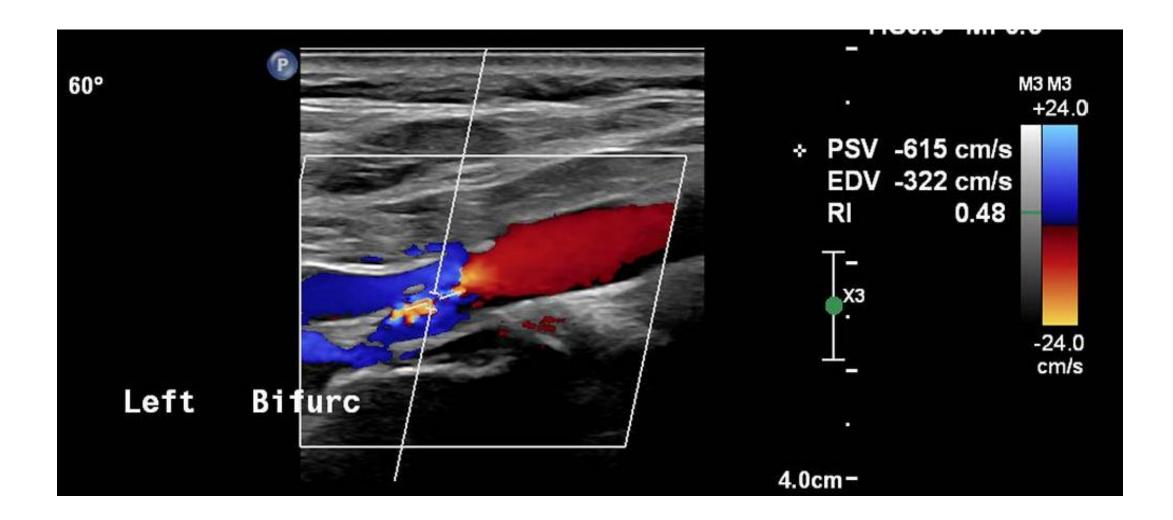
Director of stroke unit
Interventional Neuroradiologist
Petach-Tikva, Israel




Illustrative case



- 64/F
- Medical Hx: HTN, dyslipid
- 1 month prior to admissic
- Neurological examination



Doppler

Was diagnosed & hospitalized with Symptomatic LICA stenosis.

Aspirin, Plavix, high dose statins; Clexane Prophylaxis dosing

Doppler:

LICA – 95%-99% stenosis; RICA – WNL Aphasia; No change in CT

CAS was proposed following stroke team recommendations

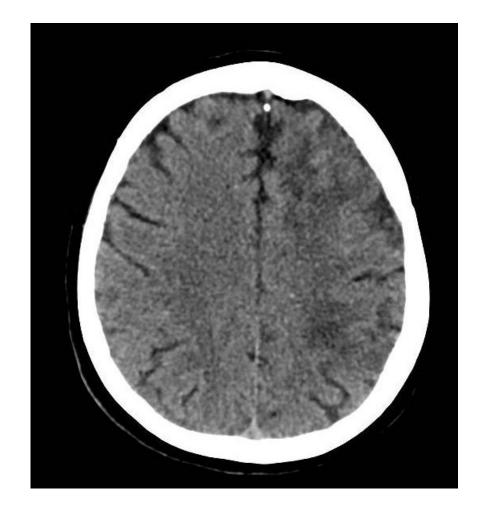
The patient developed excessive systolic BP on the day of intervention, prior to CAS On the angio table, became agitated and incooperative

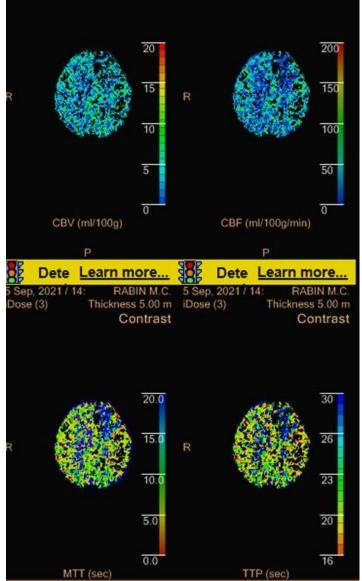
GA (propofol) with laryngeal mask

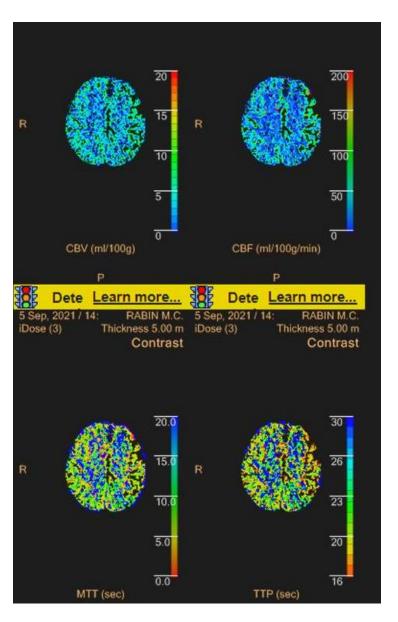
RT		LT				
Veiocity/EDV Peak Systolic Cm/Sec			End Diastola			
55	CCA	57				
164	ECA	121				
118	ICA BIF	615	322			
118	PROX - ICA	508	164			
106	ICA DISTAL	50				
113	VERTEBRAL	51				

2/09/2021

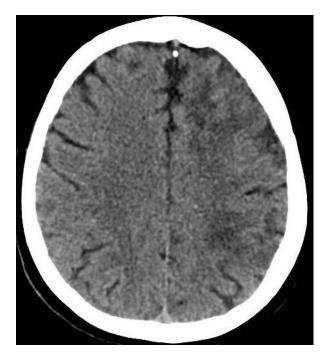
In-op: mean BP around 120

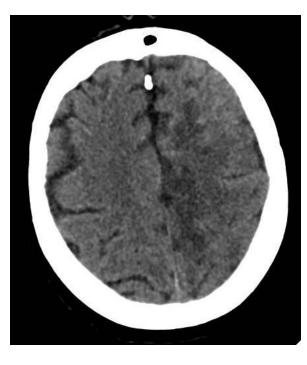

Post-op


	Post procedure	24hrs	48hrs
ВР	120-130/60 Max 173/69 (10 hrs post)	all night around 140/80	Morning 148/73
Neurologic status	intact	intact	Recurrent Focal seizure RUL Rt. Moderate hemiparesis; No aphasia
Action	Normopressan 75 mg once	Vasodip (lercanidipine) 10mg once	CT Assival, Keppra, phenytoin

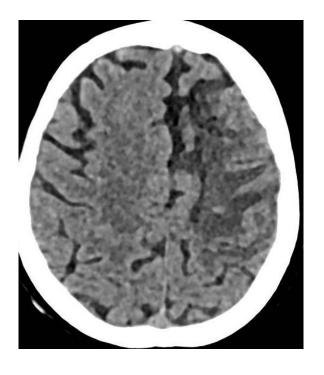


48 hrs post CAS...

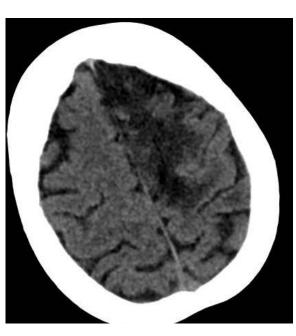



POD 3

Mild dysphasia, Rt. Hemiplegia BP – 140/68 Normopressan 150*3 BP – 168/75 - Labetolol drip;


Transferred to ICU

POD 5


Contineous focal fits; multiple AED Frizium initiated

POD 10

EEG – Continuous PEDs left fronto-temporo-centra Day 10 vimpat initiated Day 12 Fycompa initiated

POD 45

Severe mixed dysphasia Rt. Flaccid hemiplegia NIHSS 14 Deceased d/t pneumonia

Summary

Hyper-perfusion syndrome post CAS

Red flags:

Uncontrolled HTN

Severe stenosis (sub-occlusive; distal arterial collapse)

Timing (day 30 since onset)

REVIEW

Update on cerebral hyperperfusion syndrome

Yen-Heng Lin , ¹ Hon-Man Liu^{2,3}

135 articles reviewed 56 articles included

Incidence

- > 4446 patients
- CHS is a rare but severe complication
- Most common following CEA; was documented post stenting for ICAD and post MT for AIS
- CHS incidence: 1.16% (up to 4.6%; 8731 pts)
- Incidence variability due to :
 - different patient profile CAS Vs. CEA
 - CAS pts are treated by DAP and AC peri-procedural
- ICH incidence: 0.74%

Clinical presentation

Severe headache (ipsilateral or diffuse), eye and facial pain

Focal neurological deficits

Seizures

ICH or SAH

Loss of consciousness

Timing:

12 hours after CAS, and 6 days after CEA

Hemorrhage - CAS (1.7±2.1 days); CEA (10.7±9.9 days)

Up to 1 month after the procedure

Risk Factors

Stenosis ≥90%

Severe contralateral disease (≥80%) Longstanding pre-existing hypertension

With all three conditions: 16%!

.

Other risk factors:

Female

chronic kidney disease

left-sided carotid disease

progressive neurological deficit

recurrent hemorrhage

pre-existing brain lesions

microvascular disease (SVD)

Imaging

TCD

- X1.5-2 increase in MCA mean systolic velocity in CHS good correlation to CBF
- As there is no change in MCA diameter by cerebral autoregulation, MCA flow variation is well noticed
- BP normalization and MCA flow velocities –
 in correlation with clinical improvement

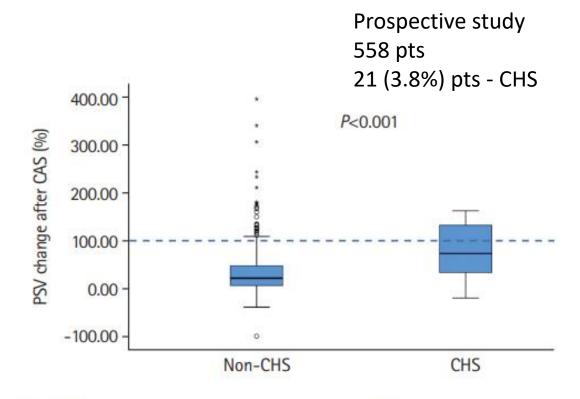
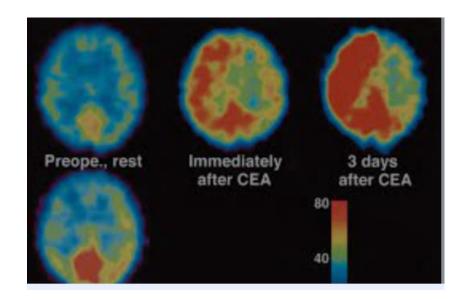
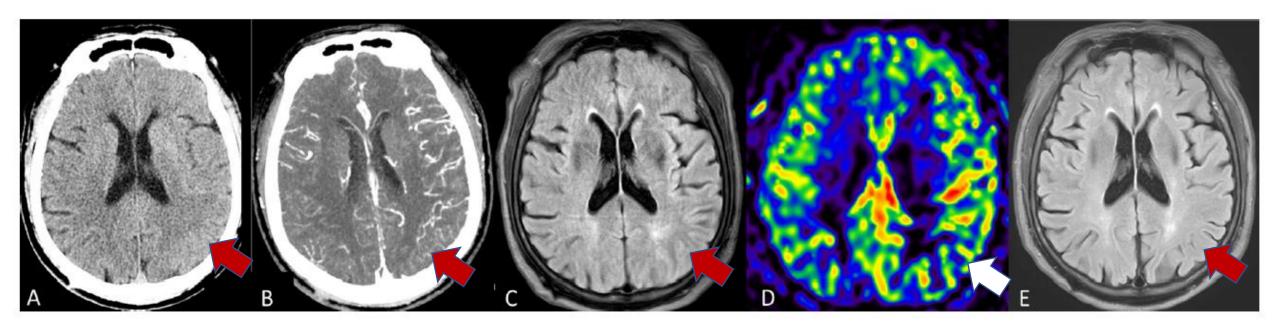



Figure 1. Comparison of peak systolic velocity (PSV) changes after carotid artery stenting (CAS) between the non-cerebral hyperperfusion syndrome (CHS) and CHS groups.

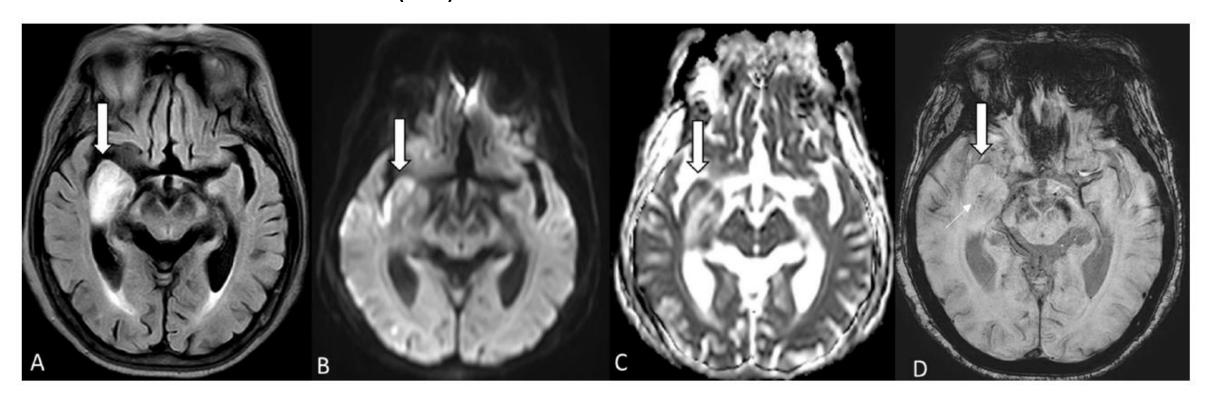

Imaging

Cerebral perfusion imaging

CT perfusion - different criteria : ↑ CBF + CBV ; ↓ MTT+TTP Perfusion weighted imaging MRI SPECT – 100% increase in uptake (no baseline data)

Radiological findings

Patchy or diffuse white matter edema involving the posterior parieto-occipital lobe


Focal hyperemia Swelling w/o ischemia Increased CBF Complete resolution Complete resolution Swelling w/o ischemia Increased CBF Complete resolution Complete reso

Negative radiological finding cannot exclude CHS

_

MRI

Post M1 MCA recanalization (AIS)

FLAIR DWI ADC SWI

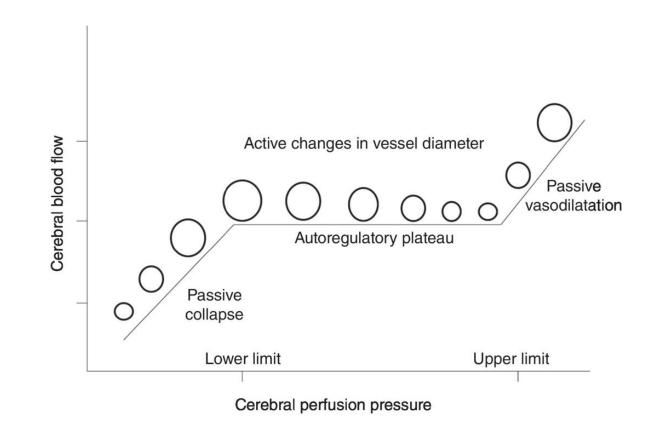
Pathophysiology

1. Impairment of cerebral autoregulation

The most accepted mechanism

Myogenic Vs. neurogenic component

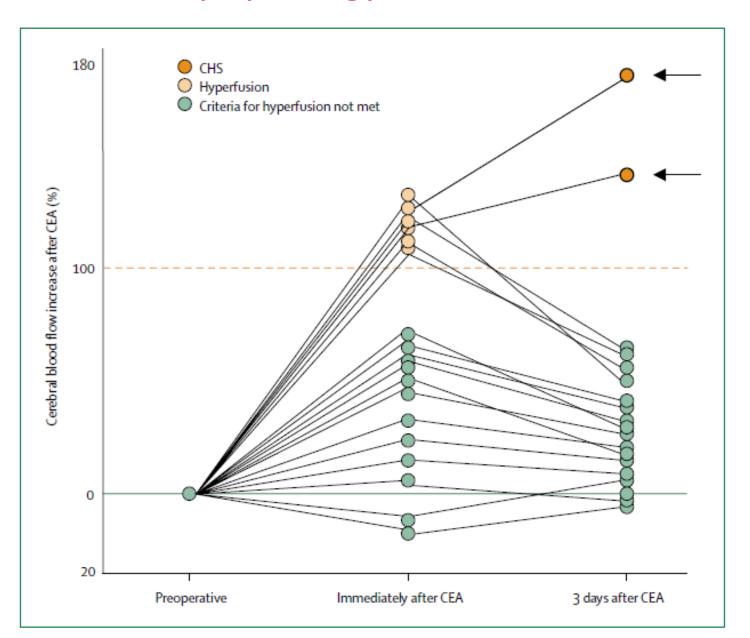
2. Damage from free radicals


(vasodilatation, vessel wall permeability, endothelial injury --- hyperperfusion.. Scavenger role ?)

3. Baroreceptor reflex breakdown

-carotid body stimulation --hemodynamic changes (PTA, stent, CEA)

4. Trigemino-vascular reflex


Neuropeptide discharge leads to vasoconstriction

CHS - Pathophysiology

Impairment of cerebral autoregulation

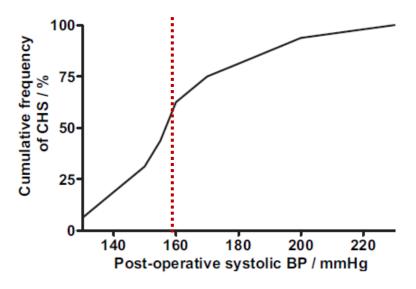
CHS - Preventive measures and management

Blood pressure:

Under 140/90; High risk patients – 120/80

BP protocol : pre CAS – Nitroglycerin

post CAS - Labetolol, metroprolol


tight control back home after discharge

High risk pts for CHS:

HTN, >90% stenosis, poor collateral flow (≥ 80% contralat ICA)

BP monitoring – A-Line or NIBP each 15 min

(1) Within 30 days post-CEA;

Staged angioplasty (SAP)

2007-2014Japan44 centers who performs SAP

Inclusions:

Atherosclerotic carotid stenosis High risk patients (SPECT criteria)

Exclusions:

Ipsilateral carotid occlusion who needed MT Angioplasty or regular CAS within 30 days of any ipsilateral ICH

Risk assessment modality

66% used quantitative SPECT with Diamox - ↓ 80% CBF

Staged angioplasty (SAP)

Stage 1: angioplasty

using an undersized balloon
(diameter of approximately 3.0 mm)
under proximal protection (Balloon inflation CCA+ECA)
w/o distal protection

Stage 2: definitive CAS

2-4 weeks later

CHS criteria:

- immediate post procedure : headaches, seizures, reduced LOC, focal neurological signs
- No signs of cerebral ischemia
- Perfusion studies SPECT or other; evidence of significant increase in ipsilateral CBF
- > ICH

Cerebral hyperperfusion syndrome Staged angioplasty (SAP) Periprocedural events

	"Scheduled" Group		"As Treated" Group			
Event	SAP (n = 113)	Regular CAS (n = 419)	p Value	SAP (n = 102)	Regular CAS (n = 428)	p Value
CHS	5 (4.4)	44 (10.5)	0.047	4 (3.9)	45 (10.5)	0.039
Ipsilat ICH	1 (0.9)	22 (5.3)	0.039	1 (1.0)	22 (5.1)	0.099
TIA or ischemic stroke	11 (9.7)	40 (9.5)	0.952	10 (9.8)	40 (9.3)	0.887
TIA	5 (4.4)	7/418 (1.7)	0.143	5 (4.9)	7/427 (1.6)	0.061
Ischemic stroke	6 (5.3)	34 (8.1)	0.316	5 (4.9)	34 (7.9)	0.290
Non-ipsilat ICH	0	2 (0.5)	1.000	0	2 (0.5)	1.000
Major bleeding	0	2 (0.5)	1.000	0	2 (0.5)	1.000
AMI	0	5 (1.2)	0.590	0	5 (1.2)	0.589
Death	1 (0.9)	3 (0.7)	1.000	0	3 (0.7)	1.000
MAE	7 (6.2)	54 (12.9)	0.048	6 (5.9)	54 (12.6)	0.054

SAP — less favorable baseline factors — more severe stenosis (89% Vs. 85%)

- much poor SPECT results with more reduced CBF

Staged angioplasty (SAP) Factors related to CHS

	"Scheduled" Group			"As Treated" Group		
Factor	OR	95% CI	p Value	OR	95% CI	p Value
Age (per 1-yr increase)	1.000	0.959-1.042	0.994	1.000	0.960-1.043	0.991
Sex, female	1.306	0.573-2.977	0.525	1.309	0.574-2.985	0.522
Revascularization w/in 7 days of symptom onset	1.643	0.562-4.804	0.364	1.667	0.570-4.874	0.350
Angiographic stenosis (per 1% increase)	1.074	1.027-1.123	0.002	1.074	1.027-1.123	0.002
SAP	0.315	0.120-0.828	0.019	0.275	0.095-0.794	0.017

Conclusion

SAP may be an effective revascularization procedure to avoid CHS for patients with carotid stenosis at high risk for CHS, without increasing periprocedural cerebral ischemic complications

Staged angioplasty (SAP): study limitations

- No Standard protocol for anesthesia
- Protection method (proximal protection Vs. distal)
- Interval between submaximal angioplasty and stenting (2-4 weeks)
- Standards for evaluating CHS
- Ischemic stroke ? (no data about silent lesions by MRI)
- Selection bias (retrospective study)
- Multicenter Not standardized (different stents, anti-aggregants, BP management\monitoring; SPECT application)

Take home message

Aggressive treatment for BP

Aggressive treatment of focal SE

Thank you ...

graphaeli@gmail.com